
MARCH 12, 2017 1

Fast Numerical Solution of the Plasma Response
Matrix for Real-time Ideal MHD Control

Alexander Glasser

1
, Egemen Kolemen

2
, and Alan Glasser

3

Abstract—To help e↵ectuate near real-time feedback con-
trol of ideal MHD instabilities in tokamak geometries, a par-
allelized version of A.H. Glasser’s DCON (Direct Criterion
of Newcomb) code is developed. To motivate the numeri-
cal implementation, we first solve DCON’s �W formulation
with a Hamilton-Jacobi theory, elucidating analytical and
numerical features of the ideal MHD stability problem. The
plasma response matrix is demonstrated to be the solution
of an ideal MHD Riccati equation. We then describe our
adaptation of DCON with numerical methods natural to so-
lutions of the Riccati equation, parallelizing it to enable its
operation in near real-time. We replace DCON’s serial inte-
gration of perturbed modes—which satisfy a singular Euler-
Lagrange equation—with a domain-decomposed integration
of state transition matrices. Output is shown to match re-
sults from DCON with high accuracy, and with computa-
tion time < 1s. Such computational speed may enable active
feedback ideal MHD stability control, especially in plasmas
whose ideal MHD equilibria evolve with inductive timescale
⌧ & 1s—as in ITER. Further potential applications of this
theory are discussed.

I. Introduction

Active feedback control of plasma stability is essential
to achieving high performance in advanced tokamaks. Ex-
periments with control systems for tearing modes, ELMs,
and divertor fluxes have demonstrated success in mit-
igating such instabilities in tokamaks.[6][7][9] However,
state-of-the-art active feedback methods are as yet lim-
ited to controlling instabilities after they are observed—
(so-called ‘catch-and-subdue’ strategies). These methods
therefore limit the real-time capability of stability control
systems, and do little to address vulnerability to sponta-
neous, rapidly growing unstable modes. Ideal MHD insta-
bilities in particular, which are experimentally observed
to grow at timescales between Alfvénic and resistive time
(⌧A < ⌧MHD < ⌧R), remain unaddressed by existing control
systems.
We note that while the growth of unstable MHD modes

is quite rapid, the evolution of stable tokamak equilbria is
considerably slower. Magnetic field geometry evolves on an
inductive timescale ⌧L/R & 1s� ⌧R � ⌧A. This separation
of timescales creates a window of opportunity to prevent
plasma instabilities before they start—that is, provided we
are able to quickly enough steer a tokamak away from un-
stable equilibria, (and thereby maintain its operation in
stable equilibrium), at a timescale ⌧control < ⌧L/R.
In this work, we demonstrate the viability of the ana-

lytical and computational aspects of a pre-emptive active
feedback ideal MHD control system. Such a system would
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require (i) diagnosis and fitting of the plasma equilibrium;
(ii) analysis of the stability characteristics of that equi-
librium; and (iii) an active controller to steer the plasma
away from its stability boundaries, all within a timescale
appropriate to the magnetic equilibrium evolution. This
paper treats only the second—the stability analysis—of
these three control system components.
We shall demonstrate that A.H. Glasser’s DCON code

may be adapted for near real-time use. We recast DCON’s
serial integration of its Euler-Lagrange equations (ELEs)
in a language more familiar to control theory, and discover
that the code becomes naturally parallelizable.
The rest of this paper is organized as follows: Section II

demonstrates the equivalence of DCON’s Lagrangian vari-
ational problem to a matrix Riccati di↵erential equation
(MRDE), emphasizing a physical intuition for the plasma
response matrix. Section III describes numerical advan-
tages of viewing DCON’s integration as a control theoretic
MRDE problem, particularly in the use of state transi-
tion matrices, which are commonly applied to such prob-
lems. Section IV presents methods undertaken to achieve
high performance parallel code. And Section V summa-
rizes these results and concludes.

II. Theory

We begin with a statement of this section’s main result,
which emphasizes the plasma response matrix’s role as a
bilinear form, mapping plasma edge perturbations to their
e↵ect on plasma energy.

Claim: The minimum bulk-fluid �W , for a stable, ax-
isymmetric plasma equilibrium, is given by

�W [⌅,⌅†] = ⌅

†(1)P(1)⌅(1) (1)

where  = 1 indicates the plasma edge, ⌅ 2 CM is a
Fourier-decomposed magnetic perturbation of the edge
flux surface (truncated at M poloidal mode numbers),
and matrix P is the solution to the MRDE

P0 = G� ⇥
P�K†⇤F�1

⇥
P�K

⇤
. (2)

(Note, the prime denotes a derivative with respect to  ,
and DCON’s  -dependent matrices {F = F†, G = G†, and
K 6= K†} 2 CM⇥M describe the coupling between poloidal
mode perturbations and the magnetic equilibrium, and the
resulting e↵ect on the plasma’s energy—see a description
of their calculation in [2].)
We demonstrate this claim in the following sections by

(A) recalling DCON’s �W Lagrangian formulation from
[2]; (B) Legendre transforming to a Hamiltonian setting;
(C) applying Hamilton-Jacobi theory; and (D) demon-
strating the applicability of the Riccati formulation to



2 MARCH 12, 2017

DCON’s axisymmetric ideal MHD model.

A. Revisiting the DCON Lagrangian

We begin by restating Eq. 19 of [2], which computes the
change in energy �W resulting from the least stable mag-
netic perturbations of an axisymmetric toroidal plasma:

�W [⌅,⌅†]⌘
1Z

0

L(⌅,⌅0,⌅†,⌅†0, )d 

=
1

2µ0

1Z

0

⇣
⌅

†0F⌅0 +⌅

†0K⌅+⌅

†K†
⌅

0 +⌅

†G⌅
⌘
d .

(3)

Here 0    1 is a flux surface label (radial) coordi-
nate extending from the magnetic axis to the plasma edge,
and plasma perturbation ⌅ 2 CM is a vector whose en-
tries represent a radial displacement of the plasma along
 , Fourier decomposed into M poloidal modes. Hermi-
tian adjoints ⌅ and ⌅

† are taken to be independent dy-
namical variables due to their independent real and imag-
inary parts. We treat this integral for the perturbed en-
ergy as the action integral of DCON’s Lagrangian, with
coordinate  acting in lieu of a time parameter. Matrices
{F( ),G( ), and K( )} are as described above.

Since a plasma is unstable to those perturbations which
reduce its potential energy, we seek to characterize the
perturbations ⌅ which minimize �W . A necessary con-
dition at any local extremum of �W is that its variational,
�(�W ), vanishes for arbitrary variations to the perturba-
tions, {�⌅,�⌅†}. It is in this sense that L in Eq. (3) rep-
resents the appropriate Lagrangian for stability analysis in
our system.

B. The DCON Hamiltonian

Noting that L is Hermitian, and assuming our system is
stable to all perturbations—(i.e., L is positive definite)—
then L is convex, and we are free to Legendre transform
this variational problem to its Hamiltonian formalism. (As
our method is intended to pre-emptively analyze plasma
stability before MHD instabilities arise, this is an entirely
natural assumption to make.) Defining q1 ⌘ ⌅ and q

†
2 ⌘

⌅

†, our system’s canonical momenta (absorbing 1/2µ0 for
convenience) are:

p

†
1 ⌘ Lq0

1
⌘ L

⌅

0 =
⇣
⌅

†0F+⌅

†K†
⌘

p2 ⌘ Lq†
2
0 ⌘ L

⌅

†0 =
⇣
F⌅0 +K⌅

⌘
.

(4)

We thus derive the quadratic Hamiltonian:

H(q1,q
†
2,p2,p

†
1, )⌘

⇣
p

†
1q

0
1 +q

†
2

0
p2

⌘
�L(q1,q

†
2,p2,p

†
1)

=
⇣
⌅

†0F+⌅

†K†
⌘
⌅

0 +⌅

†0
⇣
F⌅0 +K⌅

⌘

�
⇣
⌅

†0F⌅0 +⌅

†0K⌅+⌅

†K†
⌅

0 +⌅

†G⌅
⌘

=
⇣
⌅

†0F⌅0 �⌅

†G⌅
⌘

=
�
q

†
2 p

†
1

�✓K†F�1K�G �K†F�1

�F�1K F�1

◆✓
q1

p2

◆
.

(5)

When treating the system dynamically, we have been care-
ful to separate q1 from q

†
2. Nevertheless, we note that

(q1)† = q

†
2 and (p1

†)† = p2. Throughout the remainder of
this paper, we shall duly omit subscripts.
The original Lagrangian problem may therefore be re-

framed; we must find the plasma perturbations q (and
their conjugate momenta p) which extremize the action
according to the Hamiltonian of Eq. (5):

�

1Z

0

⇣
p

†
q

0 + q

†0
p�H

⌘
d = 0. (6)

The perturbations which satisfy this variation are of course
those obeying Hamilton’s equations of motion (EOM)

q

0 =
@H

@p† and p

0 = � @H

@q† , (7)

which can be expressed compactly in the following 2M
degree-of-freedom linear dynamical system:

✓
q

p

◆0
=

✓ �F�1K F�1

G�K†F�1K K†F�1

◆✓
q

p

◆
. (8)

The variation Eq. (6), after an integration by parts of the
variationals of its first two terms, also yields an additional
boundary term, which must vanish at extrema:

p

†�q
���
1

0
. (9)

In an axisymmetric toroidal magnetic system, the radial
perturbation at the magnetic axis, q0 ⌘ ⌅(0), vanishes.
(Consider, for example, that minimal-energy plasma per-
turbations satisfy |r · ⇠|2 = 0.) Therefore, �q(0) = 0 by
assumption. At the the far plasma edge, however, the vari-
ation �q is arbitrary, and we therefore conclude

q

���
 =0

= p

���
 =1

= 0 (10)

are appropriate boundaries conditions for the system solu-
tions.

C. Hamilton-Jacobi Theory

We solve our system using a classical strategy of Hamil-
tonian theory, canonically transforming to the correspond-
ing Hamilton-Jacobi problem (as described in [4]). In
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this approach, the problem is simplified by performing
a canonical transformation that zeros the Hamiltonian
everywhere. Recalling that a canonical transformation
(q,p;H) 7! (Q,P;K) must preserve the Lagrangian up to
a total ‘time’ derivative

p

†
q

0 + q

†0
p�H = P

†
Q

0 +Q

†0
P�K +

dF

d 
, (11)

we use a type-2 generating function, demanding that

F = F2(q,q
†,P,P†, )�Q

†
P�P

†
Q (12)

and setting K = 0. This canonical transformation, substi-
tuted into Eq. (11), yields three equations (or five, includ-
ing equivalent adjoints):

p=
@S

@q†

Q=
@S

@P†

0 =H +
@S

@ 

(13)

where H =H(q,q†,p,p†, ) and S is Hamilton’s principal
function, a solution to F2 = S(q,q†,P,P†, ), to be deter-
mined. Substituting Eqs. (13) into Eq. (5), we find that
S must satisfy the following PDE:

S +q

†
⇣
K†F�1K�G

⌘
q�q

†K†F�1Sq†

�S†
qF

�1Kq+S†
qF

�1Sq† = 0.
(14)

Before solving for S, we note thatK = 0 implies constant
Q ⌘ � and P ⌘ ↵, because Q

0 = @K
@P = 0 = �@K

@Q = P

0.

Substituting from Eq. (13), therefore, the total derivative
of S is found to be:

dS

d 
= �H +

⇣
p

†
q

0 + q

†0
p

⌘
. (15)

Upon comparison with Eq. (6), we note that we have re-
covered the well-known result of Hamilton-Jacobi theory:

S(q,q†,↵,↵†, ) =

 Z
Ld . (16)

As a consequence S is seen to be the action of our system,
and its importance is underscored by noting that

S
���
 =1

=

1Z

0

Ld = �W [⌅,⌅†]. (17)

We note that Eq. (14) represents a second order ODE
system as a first order PDE. Given initial conditions, a
solution S to this PDE would yield solutions for q (and
thus p) as well.

D. The Riccati Formulation

Given Eq. (13), it is natural to attempt a solution for S
of the form:

S = q

†
p. (18)

Let us assume (and we shall prove in a moment) that our
dynamical variables obey the linear dependence

p( ) = P( )q( ) (19)

for some matrix P. (Note matrix P—sans serif—is not to
be confused with canonical coordinate vector P.) Using
the product rule to take the derivative of Eq. (19), and
substituting from Eq. (8), we derive DCON’s Riccati for-
mulation:

P0 = G� ⇥
P�K†⇤F�1

⇥
P�K

⇤
. (20)

(We note by the self-adjointness of this ODE that P is
everywhere Hermitian if it is anywhere Hermitian.) Given
Eqs. (18) and (19), we therefore set

S(q,q†, ) = q

†P( )q. (21)

Upon substitution into the PDE of Eq. (14), we find that
the latter immediately reduces to the ODE derived in Eq.
(20). The validity of the solution for S in Eq. (21) is
thereby demonstrated.
We thus have only left to show that there exists a matrix

P( ) satisfying Eq. (19). We do so by construction, finding
P explicitly, as follows. We first concisely denote Eq. (8)
as

x

0( ) = L( )x( ). (22)

We consider the fundamental matrix of solutions � for this
ODE, a 2M ⇥ 2M matrix whose columns form solutions
spanning independent initial conditions of the system:

�=

2

4
| |
x1 · · · x2M

| |

3

5

�0( ) = L( )�( ), where �(0) = 1.

(23)

Since �0 ⌘ �(0) = 1 is nonsingular, x0 = �0s for some
constant vector s. But by ODE linearity, it must then
hold true for all  that x( ) = �( )s. Combining these
relationships, we find a familiar result from linear ODE
theory:

x( ) = �( )
�
��1

0 x0

�
= �( )x0. (24)

In this way, �( ) is to be regarded as the state transition
matrix of the system, which maps ODE solutions forward
in  . Thus we may write Eq. (24) as

✓
q( )
p( )

◆
=

✓
�qq( ) �qp( )
�pq( ) �pp( )

◆✓
q0

p0

◆
. (25)

While this is enough to assert the desired linear de-
pendence between q and p, in our system this depen-
dence can be simplified even further. As noted above—
see Eq.(10)—the perturbation at the magnetic axis of our
toroidal plasma satisfies q0 = 0, and thus:

✓
q( )
p( )

◆
=

✓
�qp( )p0

�pp( )p0

◆
, (26)
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or, simply,

p( ) =
⇣
�pp( )�

�1
qp( )

⌘
q( ). (27)

This is in the desired form of Eq. (19), and thus provides
a solution to the Riccati equation

P = �pp�
�1
qp . (28)

E. Analysis: The Plasma Response Matrix

At the plasma edge, the Riccati solution

P(1) = �pp(1)�
�1
qp(1) ⌘ WP (29)

comprises the plasma response matrix. It may be regarded
as the plasma permeability, or the ‘conjugate momentum’
created per unit of plasma displacement, (i.e., WP ⇠ p/q).
The previous section makes clear why WP is appropri-

ately viewed as the bilinear form which maps a perturba-
tion q(1) at the plasma surface to its associated energetic
‘cost’, �W . This interpretation reemphasizes the impor-
tance of its eigenvalues to studies of plasma stability. In
particular, the system’s energy due to a perturbation is
expressly given by:

�W [⌅,⌅†] = S
���
 =1

= ⌅

†(1)P(1)⌅(1) = ⌅

†(1)WP⌅(1).

(30)
This recovers a result originally presented in [2], (derived
therein as a consequence of symmetrizing DCON’s action),
and proves our claim.⇤

III. Numerical Features of the Riccati Solution

Treating the fundamental matrix of solutions � as a
control theoretic state transition matrix—or propagator—
highlights its usefulness in parallelizing the integration of
DCON’s ODE. In particular, as seen in Eq. (25), � is an
operator that maps solutions forward in  . As a result,
any interval of the ODE Eq. (23) can be subdivided so
that � is comprised of its subpropagators:

x( 2) = �( 2, 0)x( 0) = �( 2, 1)�( 1, 0)x( 0),
(31)

where �( i, i) = 1 is the subinterval initial condition for
8i. Integration of Eq. (23) across subdomains is thereby
reduced to the multiplication of matrices that may them-
selves be independently calculated.
Furthermore, since the ultimate aim of our calculation

is WP = �pp(1)�
�1
qp(1), we are free to transform the cu-

mulative subpropagator

�N ⌘
NY

i=1

�i,i�1 ⌘
NY

i=1

�( i, i�1) (32)

8 N � 1 by any right-multiplied linear operator of the form

RN =

✓
XN 0
YN AN

◆
with AN nonsingular. For example, the

product

�21 (�10R1)R2 =

✓
�qq �qp

�pq �pp

◆

21

✓✓
�qq �qp

�pq �pp

◆

10

R1

◆
R2

(33)

leaves

WP =
�
�2qpA1A2

��
�2ppA1A2

��1
= �2qp�2

�1
pp (34)

invariant. In particular, this enables us to perform Gaus-
sian elimination (via column reduction) on the right-side
columns of each cumulative subpropagator, separating or-
ders of magnitude spanned by solutions of the ODE. This
crucial advantage mitigates otherwise catastrophic numer-
ical error in taking the matrix product of subpropagators,
which may span many orders of magnitude (⇠ O(1040),
say).
Another advantage of the domain-decomposed integra-

tion of the state transition matrix is its suitability for in-
tegrating near singular rational surfaces. We note that
subpropagators are invertible, and therefore satisfy

�21 = ��1
12 . (35)

This feature admits a convenient reversibility of the direc-
tion of integration.
As is well known, the ideal MHD ELEs have regular sin-

gularities at rational surfaces, at the magnetic axis, and at
the separatrix. While [2] approaches the challenge of inte-
grating across such surfaces with asymptotic expansions,
the state transition matrix approach a↵ords a simplifica-
tion.
As was previously noted in [10], the solutions to ELE

are well-behaved when they are integrated away from the
singular surfaces; a solution which asymptotically diverges
in the forward direction of integration, decays in the reverse
direction. Therefore, no numerical instability is created,
and the integrated modes retain their linear independence.
As a result, the integration across the singular surface

may be achieved by integrating backward from the singu-
lar surface, and taking the matrix inverse of the resulting
subpropagator. This is then multiplied with the forward-
integrated subpropagator on the right of the singular sur-
face.
It is worth further emphasizing the freedom that sub-

dividing the domain of integration a↵ords. Its adaptabil-
ity may render it useful for calculations outside the ideal
MHD model, perhaps providing a convenient numerical
technique to solve resistive and high toroidal mode num-
ber MHD stability problems, for example. A fine enough
subdivision of the integration may also allow intervals to
be integrated near singular surfaces without reversal of the
direction of integration. That is, provided subdomains are
chosen small enough to bound the growth of all modes,
the integrated modes would remain well-behaved, and in
particular maintain their linear independence.

IV. Parallel Implementation

A. Grid-packing algorithm

In our parallel adaptation of DCON, we integrate the
ODE of Eq. (23) using the ZVODE [1] complex adapative
integrator, and we parallelize the integration via OpenMP
[11] by subdividing the interval between the magnetic axis
and plasma edge. Increased computational cost of our
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Fig. 1. I) The forward integration of modes without modification
exhibits asymmetric behavior near the singular point. On approach
to  =  s, all modes are dominated by their projection along the
asymptotically diverging singular mode and numerically lose their
linear independence. II) A reversal of the integration to the left of the
surface restores symmetry and linear independence to the solutions
on both sides of the singularity. III) Highlighting the resonant modes
(m,m+M) at  s—i.e., q( s) = m/n. IV) Integration reversal for
 <  s and the exclusion of resonant modes.

ODE near ill-behaved surfaces (to wit, the magnetic axis
and separatrix, and the singular surfaces between them),
requires a careful division of integration intervals.
We find that a modification to a grid-packing algorithm

suggested in [3] works adequately to load-balance the com-
putation. In particular, we numerically fit a form factor

d⌧( ) =
X

i

↵i

1 + �i | �  si|
d (36)

to estimate the the time of integration near a point  ,
some distance from each nonanalytic surface  si. The
coe�cients (↵i,�i) are determined by the surface type of
 si (axial, rational surface, or edge separatrix). The to-
tal time of integration over an interval [ 1, 2] is therefore
estimated to be

⌧ = �0 +

 2Z

 1

d⌧( ), (37)

where �0 is fit to the unavoidable initialization time of the
ZVODE integrator on each subinterval.
With such an approximation for the time of integration,

the grid packing intervals are iteratively chosen as follows.
Beginning with a set of intervals that divide the grid at
each  si, interposing surfaces are chosen at each iteration

Fig. 2. Time of integration is seen to spike on intervals near the mag-
netic axis and singular surfaces for a naive, even-interval integration
(blue). After applying the grid-packing scheme, the computation
time per interval is substantially smoothed (orange).

to halve the largest remaining time interval, until the de-
sired number of intervals is reached. The time expense of
such a scheme for interval division is nearly free.
The importance of grid-packing is emphasized in Fig. 2.

It is apparent that without an e↵ective packing scheme,
the benefit of parallelization would be quite limited; a sin-
gle interval might otherwise require runtime comparable to
runtimes of the entire parallelized code.

B. Performance and accuracy

As shown in Fig. 3, the eigenvalues of DCON’s plasma
response matrix are reproduced with high accuracy using
our new parallel methodology. In this respect, domain
decomposition via state transmission matrices serves as a
faithful replacement for matched asymptotic expansions in
solving DCON’s singular ODE.
Even without a complete optimization of the parallel

code, our initial implementation achieves a consistent run-
time of ⇠ 490ms for an ITER-relevant EFIT equilibrium
[8] with two rational surfaces. Given a projected ITER
confinement time of ⌧E ⇠ 5s [5], such a runtime places our
algorithm in the range of viability for an ideal MHD control
system implementation at ITER. This result was achieved
using 2.4 GHz Intel Broadwell processors, with 28 cores.
The e�ciency of our parallel implementation is depicted in
Fig. 4.
One factor limiting the scalability of our approach is a

tradeo↵ between the integration speedup of a finer subdivi-
sion of intervals, on the one hand, and the nontrivial time
required to matrix-multiply subpropagators, on the other.
Data for runtimes up to 20 threads project an optimal
division of the integration into ⇠ 47 subdomains, ideally
run with one core assigned per subdomain. With a limited
threadcount, it has been optimal to divide the interval into
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Fig. 3. Plasma response matrix eigenvalues are accurate to within
0.1% of serial DCON’s.

40 subdomains.

V. Conclusion

We have demonstrated DCON’s suitability to parallel
computation, and achieved runtimes at a timescale ap-
propriate for tokamak ideal MHD stability control. We
have demonstrated the numerical advantage of using state
transmission matrices to exploit DCON’s linear Hamilto-
nian structure, and derived an alternate representation of
the plasma response matrix as a solution to a Riccati dif-
ferential equation.
We surmise that the vast literature on the solution of

Riccati equations may be further exploited to simplify ideal
MHD stability analyses. One might, for example, con-
sider integrating the MRDE Eq. (20) itself to solve for
the plasma response matrix. Although the singularities of
this equation are just as virulent as the singularities of the
ODE in Eq. (8)—(these nonanalytic features appear un-
avoidably in the coe�cients of the MRDE themselves, after
all)—there may yet be methods equivalent to asymptotic
matching, represented in the reduced Riccati system, that
prove useful.
The simplification that state transition matrices provide

may also prove quite useful in a range of other numerical
applications. This simple and seemingly overlooked feature
of the linear ODE’s present in ideal MHD stability analyses
may be used to improve calculations in the plasma edge,
or to analyze stability for resistive MHD equilibria.
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